AIR-POLLUTION CONTROL

JAPANESE ATOMIZING TECHNOLOGY SOLUTIONS: FLUE-GAS DESULPHURIZATION AND DENITRATION

IKEUCHI SPRAY NOZZLES FOR AIR POLLUTION CONTROL SYSTEM

WE OFFER SOLLUTIONS FOR AIR QUALITY CONTROL SYSTEMS (AQCS), SUCH AS FGD PROCESS AND SCR/SNCR, BY REDUCING PARTICULATE MATTER IN AN EXHAUST GAS FROM COAL FIRED PLANTS. REFINER-IES, CHEMICAL PLANTS, STEEL MILLS, PAPER MILLS ETC.

OVERVIEW OF APPLICATIONS OFIKEUCHI SPRAY NOZZLES FOR POLLUTION CONTROL

BENEFITS

- Lower running costs
- Minimal maintenance downtime with clog-resistant nozzles

INNOVATIVE GAS COOLING NOZZLES

GSIMII SERIES - FINE FOG PNEUMATIC SPRAY NOZZLES FOR GAS COOLING

DOWNSIZE GAS COOLING TOWER

The number of required nozzles can be minimized with GSIMII, which combine large spray capacity and fine fog of 50 µm*.

NOZZLE TIP AVAILABLE IN OPTIONAL MATERIALS

The nozzle tip is also available in corrosion resistant material such as Hastelloy®

LARGE SPRAY CAPACITY WITH EXCELLENT **ATOMIZATION**

■ GSIMII's average droplet size is 50µm (largest droplet size is 150 µm) with a spray capacity of 500 ℓ/hr at an air-water ratio of 130.

PAGE 4

SPB - SERIES - SPILLBACK NOZZLES FOR GAS COOLING

MINIMAL VARIATION IN DROP-LET SIZES

Spray capacity can be controlled by adjusting the return pressure while keeping the supply pressure constant. Turn-down ratio of spray capacity is 1:10. The variation in sprayed droplet size is minimal despite the modulation of spray flow.

WIDE RANGE OF SPRAY CAPACI-TIES

SBS series is available as a single-head or multiple-head nozzle. The single-head SPB nozzle is available in 60° and 85° spray angles, and with 15 different spray capacities according to nozzle arrangement and gas conditions in the cooling tower.

MULTIPLE-HEAD NOZZLES

Multiple-head SPB nozzles are suitable when a larger spray capacity is required, with a spray angle up to 140 ° or even wider, but with minimal increase in spray droplet size.

ASPB SERIES - AIR-ASSISTED SPILLBACK NOZZLES

PNEUMATIC TYPE OF SPILL-BACK NOZZLES:

- Adding compressed air supply line to the existing facility can solve various problems
- High-velocity fog is not disturbed by flow of exhaust gas and reaches

PROBLEM SOLVER

walls or around outlet of gas cooling tower

ENERGY-SAVING DESIGN FOR LESS AIR CONSUMPTION

- Higher cooling capacity than conventional spillback nozzle
- Reduced air consumption

Reduces unvaporized-water drainage and problems caused by dust adhesion to interior

JOKIJET® SERIES

STEAM NOZZLE

Innovative pneumatic spray nozzle using steam instead of compressed air to produce fine (semi-fine) atomization.

COST EFFICIENT

Great savings on running costs realized by utilizing steam from an existing boiler facility

TECHNICAL SUPPORT FOR GAS COOLING NOZZLES

DROPLET SIZE MEASUREMENT

We provide droplet size measurement by the means of a laser Doppler particle analyzer

TECHNICAL SUPPORT FOR GAS COOLING NOZZLES

COMPLETE

EVAPORA-

TION

EXHAUSTED GAS TEMPERATURE

SPRAYED WATER TEMPERATURE

TEST REPORT

In order to support spray conditions, we can provide testing reports of actual measurement of the various parameters suchs as:

- Droplet size and distribution by laser Doppler particle analyzer
- Spray dimension and coverage

Suggestion on Gas cooling Nozzle	(For Pneumatic Nozzle)

stomer:												
son in charge:												
d User:												
plication: Gas cooling										Date:	18 April 2	2018
e of Furnance:										Name:		
	<input/>					<output></output>						
							Deguired	onrouvolum		1133	L/hr	
Gas Volume			10000	Nm ³ /hr		Required spray volume		18.9	L/min			
Temp. of Inlet Gas			300	°C		Cooling time			9.6	sec		
Temp. of Outlet Gas			80	°C		Required droplet size (Immersion sa		(Immersion samplir	ng method)			
Temp. of spray water		20		°C			Max dia.	(dmax)	231	μm		
Specific gravity of Air		1.29		kg/Nm ³		Surmised average dia.(SME		61	μm			
Pressure inside of tower		-4 kPaG			Required droplet size (Laser doppler m			nod)				
Inner Dia. of cooling tower		3 m		m			Max dia.	(dmax)	184	μm		
Height of cooling tower			7	m		Surmised average dia.(SME		erage dia.(SMI	56	μm		
(Distance for evaporation)				Average g	gas velocity		0.7	m/sec				
Nozzle	series	GSIM				Surmised spray conditions		Surmised droplet size				
Nozzle name	CSIM20110			Supplied	air pre.	0.35	0.35 MPa Immersion sampling method(dma		iê.	μm		
	le	GSIM20110II		Air consu	mption	1000	NL/ min	Immersion sampling method(SMI			μm	
Number of I	Nozzle		4	pc(s)	Supplied	water pres	0.3	MPa	Laser Doppler met	hod (X99)		μm
Capacty of eac nozzle	each		283.1	L/ hr	Spray ca	pacity	283	L/hr	Laser Doppler met	hod (SMD)		μm
	4.7 L/ r		L/ min	Air-water	ratio	212	-					

CFD ANALYSIS

We provide a thorough CFD analysis of the spray conditions. This is a more cost efficient and fast way to test spray nozzles on several parameters.

SELECTING THE CORRECT SPRAY NOZZLE

PROVIDING NOZZLE SELECTION AND SPRAY CONDITIONS

Based on the "specifications Check Sheet" you complete, we select suitable nozzles and send our suggestions report, inwhich we include suitable spray conditions and spray droplet sizes required for full evaporation cofirmed by our original program. Nozzle lances, flanged connections and other optional mounting systems are custom-built to meet your expectations.

FINE ATOMIZATION SCR NOZZLES

SETOJET SERIES - CLOG-RESISTANT FINE FOG NOZZLES FOR SCR

DESIGNED FOR THE APPLICATION ENVIRONMENT

• Liquid pipe is set inside the air pipe so that liquid is not affected by heat.

Designed to mix air and liquid outside the nozzle. Clogging due to precipitated air is minimized.

• Protector has an air purging hole to protect the nozzle and liquid from heat.

• Odor tight structure

OPTIMAL SPRAY LANCE FOR YOUR EQUIPMENT OR THE ENVIRONMENT

- Integrated spray lance requires no troublesome piping around the nozzle.
- Easy to remove the spray lance from the equipment at site

Liquid

• Spray direction can be chosen as desired, straight type or angled type, depending on the equipment and the installation position

EXTERNAL MIXING SPRAY NOZZLES

CLOG-RESISTANT SNCR NOZZLES

DOVVA-G SERIES - FLAT SPRAY PNEUMATIC SPRAY NOZZLES FOR

CLOG-RESISTANT DESIGN

Pneumatic spray nozzle suitable for spraying aqueous ammonia and urea. Due to its large passage diameter, it also minimizes clogging.
Weighs less than half the weight of stainless steel.

SEMI-FINE ATOMIZATION

 \cdot Produces semi-fine atomization with a mean droplet diameter of 80 μ or more.

HEAT RESISTANT MATERIALS (OPTION)

• In addition to the standard material, Stainless Steel 316L, the nozzle tip is also available in heat-resistant steel such as Stainless Steel 310S

Example of an installation: To cover a wide area with a even distribution, alternate a wide angle spray nozzle with a narrow angle spray nozzle

PAGE **11**

TECHNICAL SUPPORT FOR GAS COOLING NOZZLES

WE ENSURE A LIFE-LONG APPLICATION FOR YOUR PRODUCT. WE OFFER **OPTIONAL EQUIPMENT TO PROTECT AGAINST: HEAT DAMAGES, CLOGGING**

WE ENSURE A LIFE-LONG APPLICATION FOR YOUR PRODUCT. WE OFFER

JACKET

HEAT DAMAGES

CLOGGING ISSUES

EXTERIOR

OPTIONAL EQUIPMENT TO PROTECT AGAINST: HEAT DAMAGES, CLOGGING

WATER COOLING

SIC, SISIC NOZZLES FOR FGD

TAA SERIES LARGE CAPACITY, HOLLOW CONE SPRAY NOZZLES FOR FGD

HIGH WEAR AND ACID RESISTANCE

• Made of wear-/acid- resistant clog-resistant SIC (silicone carbide). Also available in SiSiC (siliconized silicon carbide)

DESIGNED FOR LOW-PRESSURE OPERATION

• Due to its unique internal design, the spray angle and spray distribution are stable even at 0.03MPa (ca. 0.3 bar).

LARGE FREE PASSAGE DIAMETER

•No internal parts to minimize clogging issues

BI-DIRECTIONAL SLURRY SPRAY NOZZLE FOR FGD

WEAR-RESISTANT, LIGHTWEIGHT

- sistance and chemical durability.
- ·Weighs less than half the weight of stainless steel.

BI-DIRECTIONAL SPRAY

- The TWAA series is bi-directional, so one nozzle unit can take the place of two.
- The result: Simpler equipment layout, less maintenance and reduced costs.

SMALLER DROPLETS

- Best for applications with contact / reactions.

• Made of SiC / SiSiC (silicon carbide / silicon infiltraded silicon carbide) with excellent wear-re-

• With 2 orifices, the flow normally sent through 1 orifice is halved, yielding smaller droplets.

Ikeuchi is a Japanese company with branches all over the world. It was founded in 1954 in Osaka and has since then expanded across Asia, North america and Europe.

For inquiries / information requests / quotations related this product, please contact us

"Taking the path less traveled"

IKEUCHI EUROPE B.V.

- Merwedeweg 6, 3621 LR Breukelen The Netherlands
- C Tel: 0031-20-820-2175
- info@ikeuchi.eu
- 6 https://www.ikeuchi.eu