
Rohrreinigungsdüsen

[Eigenschaften]

- Innenreinigung von Rohren und Schläuchen, die Düse bewegt sich allein durch Sprühen von Vollstrahlen in verschiedene Richtungen als treibende Kraft.
- Der Strahl mit hoher Stoßwirkung entfernt effektiv Verkrustungen und Verschmutzungen von Rohren.

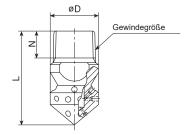
[Standarddruck]

Keine Angabe (RSP-Serie ist eine auf Bestellung gefertigte Düse).

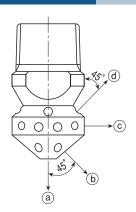
[Anwendungen]

Innenreinigung von Rohren (Abflüsse, Verteilungsrohre), Beseitigung von Zunder und Schmutz in den Rohren von Wärmetauschern und Kältemaschinen.

RSP-Serie


	RSP-Serie
Struktur	Aus Metall, Struktur aus einem Stück.
Material	• S303 • Optionales Material: S420J2

Gewindegröße		Massa (a)			
	L	Н	øD	N	Masse (g)
R1/8	26	10.5	12	7	14
R1/4	34	14	17	9	30
R3/8	38	16	19	11	48
R1/2	42	22	25	14	88



[Hinweis] Aussehen und Abmessungen können je nach Material und Code der Düsen leicht variieren.

Produktcode

Die Düsen der RSP-Serie werden auf Bestellung gefertigt. Wählen Sie die Größe der Rohrverbindung, den Öffnungsdurchmesser und die Anzahl der Löcher in jeder Richtung gemäß AUSWAHL der RSP-Serie in jeder Richtung gemäß

 $\langle \text{Beispiel} \rangle$ 1/8M RSP (0.6) $\frac{(0.6)^3}{(0.6)^3} (0.6)^3$ S303

1/8M RSP (a) $\frac{(b)^{\square}}{(c)^{\square}}$ (d) $^{\square}$ S303

1/8M 1/4M

3/8M

- (): Öffnungsdurchmesser für die Richtungen@bis@. : Anzahl der Löcher für die Richtungen bis d.
- [Anmerkung] Um anzuzeigen, dass in einer Richtung keine Löcher vorhanden sind, verwenden Sie "0" als Öffnungsdurchmesser.

* "M" steht für Außengewinde ("R" ist die ISO-Norm) und "F" für Innengewinde ("Rc" ISO-Norm). Beispiel: 1/8M = R1/8".

AUSWAHL DER RSP-Serie

1 Gewindegröße

In der Tabelle finden Sie Informationen zur Auswahl der geeigneten Gewindegröße für die von Ihnen benötigte Sprührate.

	Maximale Sprührate pro Gewindegröße (L/min)									
Gewindegröße	3 MPa	5 MPa	7 MPa	10 MPa	15 MPa	20 MPa	25 MPa	30 MPa		
R1/8	24	31	37	44	54	62	70	76		
R1/4	96	124	147	176	216	249	278	305		
R3/8	96	124	147	176	216	249	278	305		
R1/2	105	135	160	191	234	270	302	331		

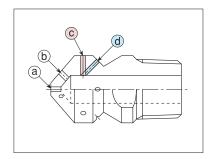
2 Öffnungsdurchmesser und Anzahl der Löcher

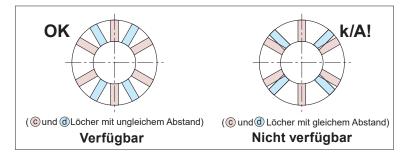
Beziehen Sie sich auf die Tabelle, um den Öffnungsdurchmesser und die Anzahl der Löcher auszuwählen.

Öffnungs durchmesser (ømm)	Sprührate für jedes Loch. (L/min)									
	3 MPa	5 MPa	7 MPa	10 MPa	15 MPa	20 MPa	25 MPa	30 MPa		
0.6	0.7	0.9	1.1	1.3	1.6	1.9	2.1	2.3		
0.7	1.0	1.3	1.5	1.8	2.2	2.5	2.8	3.1		
8.0	1.3	1.7	2.0	2.3	2.9	3.3	3.7	4.1		
0.9	1.6	2.1	2.5	3.0	3.6	4.2	4.7	5.1		
1.0	2.0	2.6	3.1	3.7	4.5	5.2	5.8	6.4		
1.2	2.9	3.7	4.4	5.3	6.5	7.5	8.3	9.1		
1.5	4.5	5.8	6.9	8.2	10.1	11.7	13.0	14.3		
2.0	8.0	10.4	12.3	14.7	18.0	20.7	23.2	25.4		

3 Sprührichtung und Anzahl der Löcher in jede Richtung

Beziehen Sie sich auf die Tabelle und geben Sie die gewünschte Anzahl von Löchern in jeder Richtung (b, © und (dan.


Gewinde größe	Maximale Anzahl Löcher in Richtung (b), [(c) + (d)] (siehe Beobachtungen)									
	ø0.6	ø0.7	ø0.8	ø1.0	ø1.2	ø1.5	ø2.0			
R1/8	6	6	6	6	4	_	_			
R1/4	10	10	10	10	8	8	_			
R3/8	10	10	10	10	8	8	6			
R1/2	12	10	10	10	8	8	6			


Bemerkungen

- Die Anzahl der Löcher in Richtung ⓑ darf den Wert in der vorherigen Tabelle nicht überschreiten.
- $\bullet \ \, \text{Die Gesamtzahl der L\"{o}cher in Richtung} \ \, \textcircled{0} \ \, \text{und} \ \, \textcircled{0} \ \, \text{darf den Wert in der vorherigen Tabelle nicht \"{u}berschreiten}. \\$
- Ungerade Werte mit Ausnahme von drei (3) werden nicht empfohlen. Sieben (7) ist nicht akzeptabel.
- Die Anzahl der Löcher für © und ⓓ muss dieselbe sein oder eine muss ein Vielfaches der anderen sein. Für die anderen Kombinationen kontaktieren Sie uns bitte.

Anmerkung

Für den Fall, dass die Zahlen für © und @ 6 und 4 sein müssen, können sie genommen werden, aber nur mit Löchern für © und @ mit ungleichem Abstand, wie in der folgenden Abbildung gezeigt

